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1 Laboratoire de Spectroscopie Atomique et Ioniqueb, Université Paris-Sud, Bâtiment 350,
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Abstract. In order to solve the radiative-transfer equation for polarized beams propagating in plasmas a
matrix approach is applied. The solution is the four-components Stokes vector, and the effect of the medium
on the state of the radiation is represented by an amplification operator. Our approach is applied to the
neon-like germanium 23.6 nm line, when a right-circularly polarized beam is injected into an amplifying
plasma. The conditions governing the recovery of the initial polarization state are investigated over the
entire spectrum of the output.

PACS. 42.55.Vc X- and γ-ray lasers – 42.68.Ay Propagation, transmission, attenuation, and radiative
transfer – 32.80.-t Photon interactions with atoms

Since the demonstration of amplification in Ne-like Se [1]
the development of high-brightness X-ray lasers (XRL)
has been at the centre of a worldwide effort, and lasing in
several other systems has been achieved [2]. Amplification
around 20 nm has been reported by several groups [3–
5]. The Ni-like isoelectronic sequence presents a promis-
ing way towards the water window. Using the RAL laser
facility, Zhang and co-workers have obtained a saturated
emission at 14 nm in Ag [6]. Attention has recently turned
to the investigation of output properties such as spatial
coherence [7,8] and polarization [9,10] in order to pro-
duce sources suitable for biological-microscopy [11], holog-
raphy [12], and interferometry [13,14] applications.

In a previous work [15] we investigated the influence
of a plasma on the polarization state of X-UV radiation.
In this paper the polarization evolution is studied by de-
veloping a general formalism where the solution is the
four-components Stokes vector, and where the absorption
and induced-emission processes are represented by a 4×4
matrix. We consider a radiation which results from (i)
the J ′M ′ → JM transitions between two levels (fixed
J ′ and J), and (ii) a possible -totally polarized- incident
beam whose frequency corresponds to the above transi-
tions, and whose effect consists in generating population
differences among the states of each level, thus polarizing
the medium. Owing to the XRL irradiance conditions, the
resulting plasma is generally well represented by a cylin-
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drical column whose axis is taken to be the z axis of a
right-handed coordinate system xyz. As the XRL beam
propagates parallel to this axis, only circularly polarized
waves (σ+ and σ−) can be amplified. Using the Bloch re-
lation for the density matrix, and the Maxwell wave equa-
tion for the electric-field propagation, one obtains the rate
equations governing the evolution of the quantum-state
populations nJM [16].

An incident σ+ beam, which is the output of a first
plasma referred to as the injector, is seeded in a second
plasma (the amplifier). The intensity Iinc of the incident
beam is given by Iinc = S[exp(Glinj) − 1], where S is
the source function, G the local gain, and linj the injec-
tor length. Figure 1 shows the amplifier quantum-state
populations n1M and n2M involved in the Ge22+ 2−1 las-
ing line (23.6 nm). In the absence of a polarized incident
beam, the populations are equal for M and −M states.
The atomic orientation is thus zero, which means that
the medium cannot generate a circularly polarized output,
i.e., there is no spontaneous polarization. When a σ+ wave
of intensity Iinc = 2.7 × 105 W/cm2 (S = 25.2 W/cm2,
G = 9.28 cm−1, and linj = 1 cm), is injected in the ampli-
fier, the n1M ’s are enhanced while the n2M ’s are reduced
by a larger amount, compared to the populations calcu-
lated in the absence of incident beam. Concerning J = 2,
the depletion is stronger for higher M (cf. relative line
strengths), as long as the intensity of the σ− wave remains
below saturation. At large propagation lengths saturation
is achieved for σ+, and σ− begins to saturate, yielding
smaller and smaller |n2M − n2−M | differences. Under the
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Fig. 1. Population density of the states involved in the Ge22+

2−1 lasing line (23.6 nm), namely |(2p53s)1M > (a) and
|(2p53p)2M > (b), as a function of amplifier length. Iinc 6= 0
indicates the presence of an incident σ+ radiation which is the
output of 1 cm long injector. The electron density is equal
to 7 × 1020 cm−3, and the electron and ion temperatures are
Te = 500 eV and Ti = 300 eV. These values are representative
of saturated lasers.

dominant σ+ field, to the most depleted |2M〉 states cor-
respond the most fed |1M − 1〉 states. As a result, |11〉 is
more populated than |1−1〉. Owing to the elastic electron-
ion collisions |JM〉+ e− → |JM ′〉+ e−(M ′ 6= M), whose
rate is large enough to equally re-distribute the ions among
the quantum states of each laser level, the orientation and
alignment are very small.

The resolution of the radiative-transfer equation
(RTE) consists in finding the four Stokes parameters
I(p)(p = 0−3), where I(0) denotes total intensity, while
I(1) and I(2) involve linear polarization, and I(3) circu-
lar polarization. For a beam propagating with frequency
ν, in a small solid angle Ω centered on the z axis, the

inhomogeneous RTE is

∂I(z, ν,Ω)

∂z
= −K(z, ν,Ω)I(z, ν,Ω) + J(z, ν,Ω), (1)

where K is the 4× 4 matrix which describes the absorp-
tion, induced-emission, and anomalous-dispersion pro-
cesses. This matrix is written

K=−


G

(0)
G

(1)
G

(2)
G(3)

G
(1)

G
(0)

−[U
(3)

−W
(3)

] U
(2)

−W
(2)

G
(2)

U
(3)
−W

(3)
G

(0)
−[U

(1)
−W

(1)
]

G
(3)

−[U
(2)

−W
(2)

] U
(1)

−W
(1)

G
(0)


(2)

Assuming that the Zeeman coherences 〈JM |ρ|JM ′〉 (non-
diagonal elements of the density matrix in each J level)
are zero, the absorption properties of the medium, with
respect to the different polarization states of the radiation
field, are represented by the components

K
(p)

(z, ν,Ω) =
3

4π
Bhν0(2J + 1)Φ(ν)

×
∑
M,N,q

nJN (z)

(
J ′ J 1
−M N q

)2

T
(p)

−q,−q(Ω),

(3)

where B is the Einstein coefficient for absorption, Φ the
normalized lineshape, and ν0 the corresponding central
frequency. Φ is calculated numerically using a very robust
and reliable code [17] which accounts for electron-ion col-
lisions and dynamic ion Stark broadening. The tensors

T
(p)

q,q′ , defined in appendix 1 of reference [18], can be ex-
pressed in terms of the rotation matrices relative to the
angles of the rotation bringing the polarization unit vec-
tors e±1[e±1 = (∓i + ij)/

√
2] and e0[e0 = k] on the unit

vectors i, j, k of the right-handed coordinate system xyz.
The p = 0 component describes the absorption process,
irrespective of the polarization state, while the p = 1−3
components account for the coupling, due to absorption,

of I
(0)

with I
(1)

, I
(2)

, and I
(3)

, respectively.
The U (r)(r = 1−3) components

U
(r)

= K
(r)

{Φ→ Ψ}, (4)

which involve absorption, describe the cyclical coupling

of I
(1)

, I
(2)

, and I
(3)

with each other as a consequence
of anomalous dispersion. U (r) is obtained from K(r) with
the condition that Φ is replaced by the dispersion profile
Ψ , responsible for the anomalous-dispersion effects which
can play a significant role in many radiative-transfer sit-
uations. Ψ is the imaginary part of the complex profile
Π(ν) = Φ(ν) + iΨ(ν). If Φ is taken to be a Voigt function
(negligible Stark broadening) then Ψ is well represented by
a Faraday-Voigt function. Even in the absence of magnetic
field, the dispersion effects could be important in the sat-
uration regime where the atomic polarization of the laser
levels is generally finite. For an X-ray beam propagating
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Ō(z, z′) = exp[G
(0)

(z − z′)]


cosh[Λ1(z − z′)] 0 0 −S(G) sinh[Λ1(z − z′)]

0 cos[Λ2(z − z′)] −S(U) sin[Λ2(z − z′)] 0

0 S(U) sin[Λ2(z − z′)] cos[Λ2(z − z′)] 0

−S(G) sinh[Λ1(z − z′)] 0 0 cosh[Λ1(z − z′)]


(11)

along the z direction, Ψ is not involved in the final re-
sults. The total emission vector J (Eq. (1)) accounts for
spontaneous emission. Its four components are given by

J
(p)

= α−1K
(p)

{nJN → nJ′M} with α =
2J + 1

2J ′ + 1

B

A
(5)

where A is the spontaneous-emission rate. The induced-
emission components can be expressed in a rather compact
form:

H
(p)

= αJ
(p)

. (6)

Finally, the W (r)’s, which play the same role for induced
emission as the U (r)’s for absorption, are

W
(r)

= U
(r)

{nJN → nJ′M}. (7)

To obtain the absorption matrix corrected for induced

emission (Eq. (2)) we have set G
(p)

= H
(p)

−K
(p)

.

Taking into account the properties of the tensors T
(p)

q,q′ ,
for a beam propagating along the z axis, we can show that

K(1), K
(2)

, H(1), and H
(2)

are equal to zero, and one thus
obtains a more tractable K matrix

K = −


G

(0)

0 0 G
(3)

0 G
(0)

−[U
(3)

− βJ
(3)

] 0

0 U
(3)

− βJ
(3)

G
(0)

0

G
(3)

0 0 G
(0)

 ,

(8)

where β[= β(ν)] = αΨ(ν)/Φ(ν).
The formal solution of the inhomogeneous RTE is

given in terms of the amplification operator Ō:

I(z) =

∫ z

z0

dz′Ō(z, z′)J(z′) + Ō(z, z0)I(z0), (9)

where z−z0 is the propagation length. The first contribu-
tion in the rhs accounts for emission in the interval [z0, z],
while the second one is related to an incident beam pene-
trating into the amplifier with the Stokes vector I(z0). In
the framework of non-relativistic quantum electrodynam-
ics, Ō may be written as [18]:

Ō(z, z′) = exp
[
G

(0)

(z − z′)
]

×

{
1

2
[cosh[Λ1(z − z′)]+cos[Λ2(z − z′)]]M1

− sin[Λ2(z − z′)]M2 − sinh[Λ1(z − z′)]M3

+
1

2
[cosh[Λ1(z − z′)]− cos[Λ2(z − z′)]] M4

}
. (10)

In the case of a beam propagating along the z axis

with a small divergence, we have Λ1 = |G
(3)

| and Λ2 =

|U
(3)

− βJ
(3)

|. M1 is the 4 × 4 identity matrix. After a
straightforward calculation we can show that the sole non-
zero matrix elements of the three other matrices M̄i are
M2(2, 3) = −M2(3, 2) = S(U), M3(1, 4) = M3(4, 1) =
S(G), M4(1, 1) = M4(4, 4) = −M4(2, 2) = −M4(3, 3) =

1, where S(G) = −G
(3)

/Λ1 and S(U) = [U
(3)

−βJ
(3)

]/Λ2.
It is then easy to show that Ō takes the form:

see equation (11) above.

It is justified to partition the amplifier along the direction
of propagation of the XRL beam in m intervals of small
lengths z1− zl−1(l = 1, 2, ...m), with zm − z0 equal to the
propagation length. Assuming the medium homogeneous
in each segment, we can show that the solution of equation
(1) is

I(z) =ŌmŌm−1 . . . Ō2Ō1I(z0) + Vm

+
m−1∑
l=1

ŌmŌm−1 . . . Ōl+1Vl, (12)

where each l-indexed quantity is constant in [zl−1, zl].
The vectors Vl are given by

Vl =

∫ zl

zl−1

dz
[
exp[−(zl − z)Kl]

]
J(z), (13)

with J(z) =
(
J

(0)

(z) 0 0 J
(3)

(z)
)†

(† means transpose).

Vl is the Stokes vector corresponding to a wave emitted
and amplified in the lth interval. The successive appli-
cations of Ōl+1, Ōl+2, . . . , and Ōm describe the ampli-
fication in the (l + 1)th, (l + 2)th, ... , and mth inter-
vals, respectively. Without incident beam or with an un-

polarized incident beam, G
(3)

= 0 because K
(3)

and J
(3)

are themselves equal to zero, and the only non-zero com-

ponent of V is thus V
(0)

. It is then easy to show that

V
(0)

l = [J
(0)

l /G
(0)

l ][exp[G
(0)

l (zl − zl−1)] − 1], which is the
well-known solution of the RTE for unpolarized radia-

tion, with J
(0)

l designating the emissivity and G
(0)

l the lo-
cal gain. In our more general case, the Vl’s are obtained
through a straightforward calculation involving a Taylor
expansion of the exponential in equation (13), followed by
applications of [Kl]

s(s = 0, 1, 2, ...) to J, and finally by an

integration. As V
(1)

l = V
(2)

l = 0, only the (1,1), (1,4), (4,1),
and (4,4) elements of the matrix product ŌmŌm−1...Ōl+1

need be considered.
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Fig. 2. Finite Stokes parameters I(3) and I(0), and r =
I(3)/I(0) for the Ge22+ 2−1 lasing line (23.6 nm), as a function
of wavelength. Injector length is 0.5 cm. Amplifier lengths are
(a): 1 cm, (b): 2 cm, (c): 3 cm. Density and temperatures, as
in Figure 1.

The contribution
∑m−1
l=1 ŌmŌm−1...Ōl+1Vl to the

Stokes vector then reduces to the 2-components vector I1:

I1 =
m−1∑
l=1


cosh

[
m∑

i=l+1

Λ1i(zi−zi−1)

]
sin

[
m∑

i=l+1

Λ1i(zi−zi−1)

]

sinh

[
m∑

i=l+1

Λ1i(zi−zi−1)

]
cosh

[
m∑

i=l+1

Λ1i(zi−zi−1)

]


×

V (0)

l

V
(3)

l

 exp

[
m∑

i=l+1

G
(0)

i (zi − zi−1)

]
. (14)

For a circularly polarized incident beam I0[≡ I(z0)] is such

that I
(1)

0 = I
(2)

0 = 0. The contribution arising from the
incident beam, namely ŌmŌm−1...Ō2Ō1I(z0), is then re-
placed by the 2-components vector I2:

I2 =


cosh

[
m∑
i=1

Λ1i(zi−zi−1)

]
sinh

[
m∑
i=1

Λ1i(zi−zi−1)

]

sinh

[
m∑
i=1

Λ1i(zi−zi−1)

]
cosh

[
m∑
i=1

Λ1i(zi−zi−1)

]


×

I(0)

0

I
(3)

0

 exp

[
m∑
i=1

G
(0)

i (zi − zi−1)

]
. (15)

The populations of the laser states (see Fig. 1) have an
effect on the radiative-transfer problem, through the com-
ponents given by equations (3-7). In other words, the in-
tensity of the X-ray beam, which in the saturation regime
determines the populations (rate equations, Ref. [16]),
modifies the polarization state of the outgoing beam. The

non-zero Stokes parameters I
(0)

and I
(3)

are given by equa-

tions (13-15). Let us represent I
(0)

, I
(3)

, and I
(3)

/I
(0)

, for
the Ge22+ 2−1 line, when a σ+ wave is seeded in the am-
plifier. In Figure 2 the injector length (linj) is 0.5 cm and
the amplifier length (lamp) varies. A large degradation of
the initial polarization state occurs over the entire spec-
trum of the output, for the smaller lamp. The difference

between I
(0)

and I
(3)

decreases for increasing lamp show-
ing that the radiation tends to recover the initial right-
circular polarization. In Figure 3, lamp = 1 cm and we
vary the injector length. The same features as above, but
more pronounced, are observed. It is clear from the ratio
of the Stokes parameters that the degree of circular po-
larization is less attenuated in the line core than in the
wings of the output.

We now define a vector D whose r components (r =
1−3) are polarization rates:

D
(r)

= I
(r)

/I
(0)

, (16)

where the four Stokes parameters are integrated over

frequency. We have −1 ≤ D
(r)

≤ 1. In our case

D
(1)

= D
(2)

= 0, i.e., the output cannot be linearly

polarized. D
(3)

is the difference between the relative
intensity of right-circular polarization, and that of

left-circular polarization. Table 1 shows D
(3)

for the
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Fig. 3. Same as Figure 2. The amplifier length is 1 cm. Injector
lengths are: (a): 1 cm, (b): 1.5 cm.

Table 1. Rate of circular polarization of the Ne-like Ge 2−1
line (23.6 nm), for various injector and amplifier lengths (cm).
Density and temperatures, as in Figure 1.

amplifier→ 1 1.5 2 2.5 3

injector↓

0.5 0.005 0.0813 0.328 0.463 0.546

1 0.302 0.716 0.828 0.868 0.891

1.5 0.918 0.956 0.969 0.975 0.978

Ne-like Ge 2−1 line. As clearly seen, the rate of cir-
cular polarization varies by a large amount when linj

and lamp vary, but it does not suffer an important
degradation if the intensity of the incident beam is large

(linj ≥ 1.5 cm) and the amplifier length is important. D
(3)

decreases from its initial value, namely 1, for the small-
est amplifier lengths, due to an amplification of the σ−
wave. As σ+ -seeded wave- is amplified more efficiently

than σ−, D
(3)

increases rapidly above a sufficiently large

length.The incident-beam intensity [I
(0)

0 ] plays the leading
role in the final polarization state. It is also responsible for
population migrations in each laser level, yielding a finite
atomic orientation, thus enhancing the contribution of the
medium to the final polarization state. However, this ef-
fect is attenuated by the electron-ion collisions which tend
to equally re-distribute the ions between the states of each
level (see Ref. [16]). The ion-ion collisions are much less
efficient, in particular because the ion density is about
twenty times smaller than the electron density.

To conclude, the solution of the RTE is obtained from
a rigorous and new approach which is useful for the knowl-
edge of the polarization evolution in soft-X-ray lasers, and
which can be extended without major difficulty to other
fields such as astrophysics and ICF plasmas. In order to as-
sess the validity of our approach and to evaluate the role
of elastic collisions on the output polarization, we plan
an experiment at the LULI laser facility (École Polytech-
nique), in a configuration of injector-amplifier. Multilayers
mirrors will be used to polarize the injector -unpolarized-
output providing a circularly polarized beam at the entry
of the amplifier.
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